Objectives

• Review relevant elbow anatomy and throwing biomechanics
• Discuss common elbow injuries and their treatment in throwing athletes
• Understand risk factors and how to prevent elbow injuries in young throwers
Primary Elbow Stabilizers

• Bone
 – Ulnohumeral articulation 50%
 • Primarily at end ROM
• Ulnar collateral ligament
 – Valgus stress
• Lateral UCL
 – Varus stress
Ulnar Collateral Ligament Complex

- **Anterior Bundle**
 - Valgus stability throughout entire ROM
 - Anterior and Posterior Bands

- **Transverse Bundle**
 - Does not cross joint

- **Posterior Bundle**
 - Secondary stabilizer in flexion

- **Load to failure ~32 Nm**
Secondary Stabilizers

- Functionally stabilize elbow against valgus stress during active ROM
 - Radiocapitellar articulation
 - FCU
 - FDS
 - PT
Throwing motion

Valgus forces
Elbow Stresses During Throwing

- Most elbow injuries occur during acceleration
 - Humeral IR torque
 - 64 Nm of valgus stress (can be much higher)
 - Rapid elbow extension
 - 500 N compressive force at radiocapitellar joint
Valgus Extension Overload

- Tensile Stress Medially
- Shear Stress Posteriolrly
- Compressive stress laterally
Compressive and tensile forces during throwing

The *physes* (growth plates) are highlighted with a white dotted line.

Compression forces

Tensile forces

Posterior view of the bones of the elbow

Lateral side

Medial side
Panner’s Disease

• AVN of the capitellum followed by reossification
• Chronic repetitive trauma
• Self-limiting
• 6-10 years of age
• Lateral elbow pain, aggravated by activity
• TTP over capitellum
• 20-30° extension lag
• Rest, NSAIDs, PT
Capitellar OCD

- Fragmentation of bone and overlying cartilage
- Chronic lateral compression
- 10-16 years of age
- Lateral elbow pain
 - Worse with activity
 - Mechanical symptoms
 - Elbow joint effusion
 - Decreased ROM
- Rest, NSAIDs
- Surgery
Olecranon Apophysitis/Stress Fracture

- Repetitive microtrauma
 - Olecranon impingement
 - Triceps tensile stress
- Age dependent injury pattern
- Posterior elbow pain
- TTP over olecranon
- Rest, NSAIDs
- Surgery
Little League Elbow

- Medial epicondyle apophysitis
- Repetitive valgus overload
- 10-15 year old
- TTP over medial epicondyle
- Pain with resisted wrist flexion and pronation
- Pain worse with throwing
- Rest, NSAIDs, PT
- Surgery
Ulnar Collateral Ligament Injury

- Rarely occurs before fusion of the medial epicondyle
- Valgus extension overload
- Repetitive microtrauma more common than acute “pop”
- Medial elbow pain during late cocking/early acceleration
- Decreased accuracy and velocity
- Ulnar nerve symptoms
UCL load to failure = 32 Nm
Valgus stress during acceleration = 64 Nm
<table>
<thead>
<tr>
<th></th>
<th>Youth (n=23)</th>
<th>High School (n=33)</th>
<th>High School (n=115)</th>
<th>Professional (n=60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elbow Varus Torque (Nm)</td>
<td>28±7</td>
<td>48±13</td>
<td>55±12</td>
<td>64±15</td>
</tr>
<tr>
<td>Ball Speed (MPH)</td>
<td>62±2</td>
<td>73±4</td>
<td>78±4</td>
<td>82±4</td>
</tr>
</tbody>
</table>

Fleisig, et al., *J Biomechanics*, December 1999
Physical Examination

• TTP 1-2 cm distal to medial epicondyle
• No pain with resisted wrist flexion
• Stress tests
 – Valgus stress test
 – Milking maneuver
 – Moving valgus stress test
Imaging

- X-Ray
 - Avulsion
 - Osteophytes
- Stress XR
 - Rarely used
- MRI
 - Study of choice
 - +/- Arthrogram
UCL Tear Treatment

- Non-operative
 - Partial tears
 - Rest, hinged brace, strengthening (Flexor-Pronator), throwing program
 - 26/31 (84%) who completed rehab RTSP
 - 100% RTP with grade 1 injury
 - 66-94% RTP with grade 2 tear
 - PRP?
 - 88% RTP at 12 weeks (Podesta, *AJSM*, 2013)
 - 96% RTP with improved MRI (Deal, *OJSM*, 2017)
UCL Tear Treatment

- Operative
 - Complete tears
 - Partial tears that fail rehab
 - Repair vs. Reconstruction
UCL Reconstruction

- First performed by Jobe in 1974
- Described in JBJS 1986
- Reconstruct anterior band of UCL
- Gold standard
- “Tommy John Procedure”
- Many subsequent modifications
- High RTP rates
 - 66-97%
UCL Reconstruction Techniques

• Original Jobe technique
 – Harvest ipsilateral Palmaris longus
 – Reflect FP mass
 – Transpose ulnar nerve
 – Bone tunnels in distal humerus and olecranon

• Modified to split FP muscle and leave ulnar nerve in place
 – Better outcomes
 – Fewer complications
 – Less ulnar neuropathy
UCL Reconstruction Techniques

- Docking procedure
 - Blind humeral tunnel
 - 2 drill holes in ulna
- DANE TJ procedure
 - Docking in humerus
 - Interference screw in ulna
- Cortical buttons
- All designed to decrease number of tunnels and risk of tunnel failure
UCL Reconstruction Outcomes

- Saper, et al., *OJSM*, April 2018
 - 140 patients, 13-19 years old
 - ASMI technique (Docking + UNT)
 - 90% Return to same level of sport

- Peters, et al., *JSES*, March 2018
 - Systematic review, 22 studies
 - MLB, MiLB, College, HS
 - 79% Return to same level of sport
 - *Increased ERA, walks, hits/inning*
 - *Decreased innings and FB velocity*
UCL Repair

- Repair +/- Augmentation may be indicated in select patients
- Proximal or Distal Injuries only
 - Savoie, et al., *AJSM*, June 2008
 - 60 patients, 17.2 years old, 5 year F/U
 - Primary repair with drill holes or anchors
 - 58/60 RTS by 6 months
 - 4 failures (2 early, 2 late)
 - Erickson, et al., *OJSM*, January 2017
 - Meta-analysis, 4 studies, 92 patients
 - 87% RTS
 - Walters, et al., *OJSM*, March 2016
 - 13 pitchers, 17.8 years old
 - Primary repair with Internal Brace Augmentation
 - 12/13 RTS by 6 months
UCL Reconstruction Rehab

- Splint for 7 days
- Gradually increase ROM over 4-8 weeks (+/- brace)
- Protected strengthening and conditioning week 8-16
- Interval throwing week 17-28
- Return to mound week 29
- Live batters week 40
- Return to play 12-18 months
- May be quicker for repair
Risk Factors and Injury Prevention

- Pitching with fatigue or pain
- Pitching >8 months/year
- Pitching on multiple teams with overlapping seasons
- Pitching >100 innings/year
- Pitching multiple games/day
- Pitching back to back days
- Playing pitcher and catcher
- Too many pitches
- Poor mechanics
- Increased velocity
Conclusions

- Overhead throwing exposes the elbow to significant stress
- Valgus Extension Overload is the underlying mechanism for many elbow injuries regardless of age
- Proper mechanics and avoiding overuse are essential to preventing injuries