Elbow Injuries in the Young Throwing Athlete

Eric Eisner, MD
Joe DiMaggio Children's Hospital
[U18] Sports Medicine Conference
March 9, 2019

Objectives

- Review relevant elbow anatomy and throwing biomechanics
- Discuss common elbow injuries and their treatment in throwing athletes
- Understand risk factors and how to prevent elbow injuries in young throwers

Primary Elbow Stabilizers

- Bone
 - Ulnohumeral articulation 50%
 - Primarily at end ROM
- Ulnar collateral ligament
 - Valgus stress
- Lateral UCL
 - Varus stress

Ulnar Collateral Ligament Complex

- Anterior Bundle
 - Valgus stabilitythroughout entire ROM
 - Anterior and Posterior Bands
- Transverse Bundle
 - Does not cross joint
- Posterior Bundle
 - Secondary stabilizer in flexion
- Load to failure ~32 Nm

Secondary Stabilizers

- Functionally stabilize
 elbow against valgus
 stress during active ROM
 - Radiocapitellar articulation
 - FCU
 - FDS
 - PT

Throwing motion

Elbow Stresses During Throwing

- Most elbow injuries occur during acceleration
 - Humeral IR torque
 - 64 Nm of valgus stress
 (can be much higher)
 - Rapid elbow extension
 - 500 N compressive force at radiocapitellar joint

Valgus Extension Overload

- Tensile Stress Medially
- Shear Stress Posteriorly
- Compressive stress laterally

Panner's Disease

- AVN of the capitellum followed by reossification
- Chronic repetitive trauma
- Self-limiting
- 6-10 years of age
- Lateral elbow pain, aggravated by activity
- TTP over capitellum
- 20-30° extension lag
- Rest, NSAIDs, PT

Capitellar OCD

- Fragmentation of bone and overlying cartilage
- Chronic lateral compression
- 10-16 years of age
- Lateral elbow pain
 - Worse with activity
 - Mechanical symptoms
 - Elbow joint effusion
 - Decreased ROM
- Rest, NSAIDs
- Surgery

Olecranon Apophysitis/Stress Fracture

- Repetitive microtrauma
 - Olecranon impingement
 - Triceps tensile stress
- Age dependent injury pattern
- Posterior elbow pain
- TTP over olecranon
- Rest, NSAIDs
- Surgery

Little League Elbow

- Medial epicondyle apophysitis
- Repetitive valgus overload
- 10-15 year old
- TTP over medial epicondyle
- Pain with resisted wrist flexion and pronation
- Pain worse with throwing
- Rest, NSAIDs, PT
- Surgery

Ulnar Collateral Ligament Injury

- Rarely occurs before fusion of the medial epicondyle
- Valgus extension overload
- Repetitive microtrauma more common than acute "pop"
- Medial elbow pain during late cocking/early acceleration
- Decreased accuracy and velocity
- Ulnar nerve symptoms

UCL load to failure = 32 Nm Valgus stress during acceleration = 64 Nm

	Youth (n=23)	High School (n=33)	High School (n=115)	Professional (n=60)
Elbow Varus Torque (Nm)	28+-7	48+-13	55+-12	64+-15
Ball Speed (MPH)	62+-2	73+-4	78+-4	82+-4

Fleisig, et al., *J Biomechanics*, December 1999

Physical Examination

- TTP 1-2 cm distal to medial epicondyle
- No pain with resisted wrist flexion
- Stress tests
 - Valgus stress test
 - Milking maneuver
 - Moving valgus stress test

Imaging

- X-Ray
 - Avulsion
 - Osteophytes
- Stress XR
 - Rarely used
- MRI
 - Study of choice
 - +/- Arthrogram

UCL Tear Treatment

- Non-operative
 - Partial tears
 - Rest, hinged brace, strengthening (Flexor-Pronator), throwing program
 - AJSM, March 2016, Ford, et al.
 - 26/31 (84%) who completed rehab RTSP
 - Journal of Sports Rehabilitation, February 2019, Cascia, et al.
 - 100% RTP with grade 1 injury
 - 66-94% RTP with grade 2 tear
 - PRP?
 - 88% RTP at 12 weeks (Podesta, AJSM, 2013)
 - 96% RTP with improved MRI (Deal, OJSM, 2017)

UCL Tear Treatment

- Operative
 - Complete tears
 - Partial tears that fail rehab
 - Repair vs.Reconstruction

UCL Reconstruction

- First performed by Jobe in 1974
- Described in JBJS 1986
- Reconstruct anterior band of UCL
- Gold standard
- "Tommy John Procedure"
- Many subsequent modifications
- High RTP rates
 - **-** 66-97%

UCL Reconstruction Techniques

- Original Jobe technique
 - Harvest ipsilateral Palmaris longus
 - Reflect FP mass
 - Transpose ulnar nerve
 - Bone tunnels in distal humerus and olecranon
- Modified to split FP muscle and leave ulnar nerve in place
 - Better outcomes
 - Fewer complications
 - Less ulnar neuropathy

UCL Reconstruction Techniques

- Docking procedure
 - Blind humeral tunnel
 - 2 drill holes in ulna
- DANE TJ procedure
 - Docking in humerus
 - Interference screw in ulna
- Cortical buttons
- All designed to decrease number of tunnels and risk of tunnel failure

UCL Reconstruction Outcomes

- Saper, et al., OJSM, April 2018
 - 140 patients, 13-19 years old
 - ASMI technique (Docking + UNT)
 - 90% Return to same level of sport
- Peters, et al., JSES, March 2018
 - Systematic review, 22 studies
 - MLB, MiLB, College, HS
 - 79% Return to same level of sport
 - Increased ERA, walks, hits/inning
 - Decreased innings and FB velocity

UCL Repair

- Repair +/- Augmentation may be indicated in select patients
- Proximal or Distal Injuries only
 - Savoie, et al., AJSM, June 2008
 - 60 patients, 17.2 years old, 5 year F/U
 - Primary repair with drill holes or anchors 58/60 RTS by 6 months
 - 4 failures (2 early, 2 late)
 - Erickson, et al., OJSM, January 2017
 - Meta-analysis, 4 studies, 92 patients
 - 87% RTS
 - Walters, et al., OJSM, March 2016
 - 13 pitchers, 17.8 years old
 - Primary repair with Internal Brace Augmentation
 - 12/13 RTS by 6 months

UCL Reconstruction Rehab

- Splint for 7 days
- Gradually increase ROM over 4-8 weeks (+/- brace)
- Protected strengthening and conditioning week 8-16
- Interval throwing week 17-28
- Return to mound week 29
- Live batters week 40
- Return to play 12-18 months
- May be quicker for repair

Risk Factors and Injury Prevention

- Pitching with fatigue or pain
- Pitching >8 months/year
- Pitching on multiple teams with overlapping seasons
- Pitching >100 innings/year
- Pitching multiple games/day
- Pitching back to back days
- Playing pitcher and catcher
- Too many pitches
- Poor mechanics
- Increased velocity

Conclusions

- Overhead throwing exposes the elbow to significant stress
- Valgus Extension Overload is the underlying mechanism for many elbow injuries regardless of age
- Proper mechanics and avoiding overuse are essential to preventing injuries

